编程算法-滴滴算法大赛算法解决过程 拟合算法

拟合

概论

Gap的预测,是建立在一个拟合函数上的。也有一些机器学习的味道。

总的Gap函数 = 函数(时间,地区)

  • TimeID : 时间片编号
  • DistricID:地区编号
  • Traffic:交通流量
  • Weather:天气
  • POI:设施数

百度地图POI说明
注意:每家公司的POI分类都是不同的,这里只是将百度POI做个例子,滴滴打车的POI和百度的POI定义好像是不同的。

交通流量和时间有关,一个地方的拥堵程度和时间有关系
不同的地区,各种设施配置不同。
天气和时间有关。

Gap函数 = 函数(交通拥挤度函数(时间,地区编号),POI函数(地区编号),天气函数(时间))

这里可以认为,一个地方的打车人数,交通越堵,则打车的GAP越大。天气不好,打车的人则越多,GAP也越大。设施越多的地方,打车的需求也越多,GAP可能也越大。但是这一切都只是可能性。
(题外话,其实真实的情况也要考虑节假日的问题,在节假日的时候,GAP可能会变大。当然这是一个人文的考量了)

zhihu网友的算法

作者:四名评论员

链接:你对滴滴算法大赛赛题的解决思路是什么?

来源:知乎

利益不相关,不是参赛选手,不是滴滴工作人员,纯粹觉得题目好玩。
我的分析:
这个题目的目标是预测,预测的核心是发掘信息,信息才是消除不确定性的唯一途径。信息存在于乘客与司机的几种行为模式,以及POI的不同功能类型。
乘客的行为基本上有三类模式,周期性的(每天上下班、每周去上补习班)、集中偶发性的(音乐会)和随机性的(各类杂事)。司机的行为模式包括出车、收车、找活、趴活、午休。POI类型也可以分为周期性的(工作单位)、集中偶发性(电影院、体育馆、演播大厅)、随机性的(医院、车站),当然每个POI的功能类型不是绝对的。
GAP是用车需求和供给的差,那么分别为需求和供给建立模型。
简单说,一个完整的打车需求包括出发地、目的地、时间。首先任意两个POI之间都存在一条线路,每条线路的人流量可以按照乘客的行为模式进行分解,这样也就包含了时间因素。这样最终就可以算出从每个POI出发的人数。由于数据只有方格的总数,这看起来是一个隐马尔科夫链。至于天气则基本可以看成线路人流量的一个系数。
司机接单在全天大多数时间里都是找活的状态,也就是附近有单就抢,那么某个方格某个时间片司机接单数应该是空车数量*一个系数,空车数量=上一个时间片到达的乘客数+其他司机漫无目的找活出入方格的净值+趴活司机数(找活、趴活数应该和poi类型有关,这得问问老司机拉活的窍门),系数就是抢单成功率。
非专业人士,以上只是粗浅的想了一下,还有很多细节没有考虑,抛砖引玉,达人莫笑!非专业人士,以上只是粗浅的想了一下,还有很多细节没有考虑,抛砖引玉,达人莫笑!

算法

交通拥堵

交通拥堵函数:
这里的交通拥堵函数是使用4个等级表示的。

  • LV1 20条路 权重8
  • LV2 10条路 权重4
  • LV3 15条路 权重2
  • LV4 05条路 权重1
    那么拥堵指数怎么计算呢?这里应该是对每个拥堵哟一个权重,等级越高,权重越大。
    拥挤度 = SUM(权重 * 数量)

提过了通过统计分析可以得知,LV1的路大约占2/3强,估计LV4,LV3的路是变化的关键。

编程算法-滴滴算法大赛算法解决过程 拟合算法

由于数据量非常庞大,所以这里建议将中间的计算结果也放入数据库中备用。

我们尝试使用最小二分法拟合 LV4和 订单总量
从图中可以看到,大部分的点在一个 Y = AX+ B 的直线函数中。
(未去噪点)
A:4.67355309006603
B:18.931303546517

(去除1500以上的噪点)
A:1.08888907683687
B:192.700547917395

编程算法-滴滴算法大赛算法解决过程 拟合算法

(这里使用的是2016-01-01 #51 的数据)

任务

  • 研究同一时间片,同一地区,按照日期变化,数据的变化。观察天气对数据变化的影响
  • 研究同一时间片,不同地区,POI的数量对数据变化的影响
  • 研究每个区域的需求量,可能每个区域的需求量基准数值都是差不多的。

 

俊霖

发表评论

您必须